\(\int \frac {x}{\log (c (d+e x^3)^p)} \, dx\) [144]

   Optimal result
   Rubi [N/A]
   Mathematica [N/A]
   Maple [N/A]
   Fricas [N/A]
   Sympy [N/A]
   Maxima [N/A]
   Giac [N/A]
   Mupad [N/A]

Optimal result

Integrand size = 16, antiderivative size = 16 \[ \int \frac {x}{\log \left (c \left (d+e x^3\right )^p\right )} \, dx=\text {Int}\left (\frac {x}{\log \left (c \left (d+e x^3\right )^p\right )},x\right ) \]

[Out]

Unintegrable(x/ln(c*(e*x^3+d)^p),x)

Rubi [N/A]

Not integrable

Time = 0.01 (sec) , antiderivative size = 16, normalized size of antiderivative = 1.00, number of steps used = 0, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \frac {x}{\log \left (c \left (d+e x^3\right )^p\right )} \, dx=\int \frac {x}{\log \left (c \left (d+e x^3\right )^p\right )} \, dx \]

[In]

Int[x/Log[c*(d + e*x^3)^p],x]

[Out]

Defer[Int][x/Log[c*(d + e*x^3)^p], x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {x}{\log \left (c \left (d+e x^3\right )^p\right )} \, dx \\ \end{align*}

Mathematica [N/A]

Not integrable

Time = 0.16 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.12 \[ \int \frac {x}{\log \left (c \left (d+e x^3\right )^p\right )} \, dx=\int \frac {x}{\log \left (c \left (d+e x^3\right )^p\right )} \, dx \]

[In]

Integrate[x/Log[c*(d + e*x^3)^p],x]

[Out]

Integrate[x/Log[c*(d + e*x^3)^p], x]

Maple [N/A]

Not integrable

Time = 0.03 (sec) , antiderivative size = 16, normalized size of antiderivative = 1.00

\[\int \frac {x}{\ln \left (c \left (e \,x^{3}+d \right )^{p}\right )}d x\]

[In]

int(x/ln(c*(e*x^3+d)^p),x)

[Out]

int(x/ln(c*(e*x^3+d)^p),x)

Fricas [N/A]

Not integrable

Time = 0.29 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.12 \[ \int \frac {x}{\log \left (c \left (d+e x^3\right )^p\right )} \, dx=\int { \frac {x}{\log \left ({\left (e x^{3} + d\right )}^{p} c\right )} \,d x } \]

[In]

integrate(x/log(c*(e*x^3+d)^p),x, algorithm="fricas")

[Out]

integral(x/log((e*x^3 + d)^p*c), x)

Sympy [N/A]

Not integrable

Time = 4.80 (sec) , antiderivative size = 14, normalized size of antiderivative = 0.88 \[ \int \frac {x}{\log \left (c \left (d+e x^3\right )^p\right )} \, dx=\int \frac {x}{\log {\left (c \left (d + e x^{3}\right )^{p} \right )}}\, dx \]

[In]

integrate(x/ln(c*(e*x**3+d)**p),x)

[Out]

Integral(x/log(c*(d + e*x**3)**p), x)

Maxima [N/A]

Not integrable

Time = 0.26 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.12 \[ \int \frac {x}{\log \left (c \left (d+e x^3\right )^p\right )} \, dx=\int { \frac {x}{\log \left ({\left (e x^{3} + d\right )}^{p} c\right )} \,d x } \]

[In]

integrate(x/log(c*(e*x^3+d)^p),x, algorithm="maxima")

[Out]

integrate(x/log((e*x^3 + d)^p*c), x)

Giac [N/A]

Not integrable

Time = 0.40 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.12 \[ \int \frac {x}{\log \left (c \left (d+e x^3\right )^p\right )} \, dx=\int { \frac {x}{\log \left ({\left (e x^{3} + d\right )}^{p} c\right )} \,d x } \]

[In]

integrate(x/log(c*(e*x^3+d)^p),x, algorithm="giac")

[Out]

integrate(x/log((e*x^3 + d)^p*c), x)

Mupad [N/A]

Not integrable

Time = 1.21 (sec) , antiderivative size = 18, normalized size of antiderivative = 1.12 \[ \int \frac {x}{\log \left (c \left (d+e x^3\right )^p\right )} \, dx=\int \frac {x}{\ln \left (c\,{\left (e\,x^3+d\right )}^p\right )} \,d x \]

[In]

int(x/log(c*(d + e*x^3)^p),x)

[Out]

int(x/log(c*(d + e*x^3)^p), x)